

O3PRM’s documentation

The O3PRM language’s purpose is to model Probabilistic Relational Models (PRMs)
using a strong object oriented syntax.

Table of contents

	1. Introduction
	1.1. Bayesian Networks

	1.2. Probabilistic Relational Models

	1.3. Implementation

	2. Tutorial
	2.1. The Water Sprinkler Example

	2.2. The Printer Example

	2.3. Printers with inheritance

	3. O3PRM project structure
	3.1. Compilation units

	3.2. Header syntax

	4. Type Declaration
	4.1. Categorical Types
	4.1.1. The boolean type

	4.2. Integer Types

	4.3. Real Types

	5. Class Declaration
	5.1. Attributes
	5.1.1. Tabular Declaration

	5.1.2. Rule-based CPT declaration

	5.2. Reference Slots
	5.2.1. Simple Reference Slots

	5.2.2. Complex Reference Slots

	5.3. Parameters

	6. Interface Declaration

	7. Functions
	7.1. Deterministic Functions

	7.2. Probabilistic Functions

	8. Inheritance
	8.1. Type Inheritance

	8.2. Interface Inheritance
	8.2.1. Reference Overloading

	8.2.2. Attribute Overloading

	8.3. Class Inheritance
	8.3.1. Attribute CPT Overloading

	8.4. Multiple Inheritance

	8.5. Casting and cast descendants

	9. System Declaration
	9.1. Instance declaration

	9.2. Assignment

	10. Query unit declaration

	11. O3PRM BNF
	11.1. O3PRM Language Specification

	11.2. O3PRM Query Language Specification

	12. Examples
	12.1. The Water Sprinkler

	12.2. The Printer Example

	12.3. Printers with inheritance

	13. Bibliography

1. Introduction

Probabilistic Relational Models (PRMs) are a fully object-oriented extension of
Bayesian Networks (BNs). Both PRMs and BNs are one of the many Probabilistic
Graphical Models. In this introduction, we will offer a very short
introduction to both models. For further reading, we suggest the reader to
lookup the references in the Bibliography section.

1.1. Bayesian Networks

Bayesian Networks represent discrete probability distributions using a
directed graph and parameters called Conditional Probability Tables. The
nodes of the graph represent discrete random variables and the arcs represent
probabilistic dependencies between those variables (to be precise, the lack of
an arc between two nodes represents a conditional independence between
the corresponding random variables). To each node is assigned the
Conditional Probability Tables (CPTs) of the node given its parents in the
graph, and the joint probability distribution over all the nodes/variables
in the graph is equal to the product of all the CPTs.

[image: ../_images/water_sprinkler.png]
The Water Sprinkler is a classic example of a Bayesian Networks. Its purpose
is to infer whether the grass in a garden is wet because of the rain or
because the house’s owner forgot to turn off the water sprinkler.

The probability distribution is defined over four Boolean random variables:
Cloudy, Sprinkler, Rain and Wet Grass. There are also four CPTs
representing the following conditional distributions: P(Cloudy),
P(Sprinkler|Cloudy), P(Rain|Cloudy) and P(Wet Grass | Sprinkler,
Rain).

We won’t go further in our introduction of Bayesian Network and if you never
heard of Bayesian Networks, you might need to first familiarize with them
before using O3PRM. A good place to start is the pyAgrum tutorials that you
can find at http://agrum.gitlab.io.

1.2. Probabilistic Relational Models

Bayesian Networks suffer from the same issue that had early programming languages:
the larger the network, the harder it is to create it and to maintain it.
Naturally, the BN community looked at the solutions provided by the language
programming community and found several paradigms to extend BNs: first
order logics, entity-relation models, object oriented paradigms, etc. There
is no current consensus on which BN extension is the best as each one
offers specific features lacking in the other paradigms.

Probabilistic Relational Models are one of several Object Oriented extensions
of Bayesian Networks. They offer a good implementation of the Object Oriented
paradigm while not diverging too much from the Bayesian Networks
framework. Their precise definition is provided in subsequent sections of
this documentation. But, for the moment, just keep in mind the fact that they
are an object-oriented extension of BNs.

1.3. Implementation

The aGrUM framework offers an implementation of the O3PRM language. You can
either directly use aGrUM, which is written in C++, its Python wrapper
pyAgrum or the prm_run application shipped with aGrUM’s source code. All
resources and installation instructions can be found at
http://agrum.gitlab.io.

2. Tutorial

2.1. The Water Sprinkler Example

Our first example demonstrates how to represent a Bayesian Network using the
O3PRM language. The closest notion of a BN in O3PRM is a class. A class is
composed of attributes and relations, we will skip relations for the moment
and focus on attributes. Attributes are defined by a set of parents, a CPT
and a type.

The attribute’s set of parents and CPT are similar to a node’s parents and
CPT in a BN. However, there is no equivalent of an attribute’s type in a BN.
Types are used to group random variables with identical domains. The O3PRM
language comes with a predefined type for Boolean variables. Boolean Types
are declared with the boolean keyword and have the domain false,
true. Note that order of the values in the type’s domain is important
as it determines the meaning of the values in the CPTs.

The following example implements the Water Sprinkler Bayesian Network in the
O3PRM language. Each node is represented as an attribute of the
WaterSprinkler class and all the attributes have the boolean type.

class WaterSprinkler {
 boolean cloudy {
 [0.5, // false
 0.5] // true
 };

 boolean sprinkler dependson cloudy {
 // false, true => cloudy
 [0.5, 0.9, // sprinkler == false
 0.5, 0.1] // sprinkler == true
 };

 boolean rain dependson cloudy {
 // false, true => cloudy
 [0.8, 0.2, // rain == false
 0.2, 0.8] // rain == true
 };

 boolean wet_grass dependson rain, sprinkler {
 // wet_grass
 // rain, sprinkler| false, true
 *, *: 0.1, 0.9;
 false, false: 1.00, 0.00;
 true, true: 0.01, 0.99;
 };
}

This example shows how to define the set of parents of an attribute using
the keyword dependson. It also provides two different ways to define an
attribute’s CPT: either using a tabular declaration (inside square
brackets) or a rule-based declaration (see the wet_grass CPT).

We strongly recommend formating your CPTs definitions as above to help
writing and reading them. See the formatings we used in this tutorial’s
examples. As you can see, in CPT’s tabular declarations, the O3PRM language
expects that each column sums to one. In other words, this means
that each row of the CPT represents one value of the attribute at the left
of the dependson keyword. The size of the CPT is the
product of the number of rows (i.e., the domain size of the attribute) by the
number of columns (i.e., the domain size of the Cartesian product
of the attribute’s parents).

 boolean sprinkler dependson cloudy {
 // false, true => cloudy
 [0.5, 0.9, // sprinkler == false
 0.5, 0.1] // sprinkler == true
 };

Here, the first value is the probability of
P(sprinkler==false|cloudy==false), the second value is
P(sprinkler==false|cloudy==true), the third
P(sprinkler==true|cloudy==false) and the fourth
P(sprinkler==true|cloudy==true). You can easily see that each column
sums to one.

You can also use rules to declare an attribute’s CPT. We recommend to use
this syntax when dealing with large CPTs. Each line defines the attribute’s
probability for a given value of its parents’ set. You can also use the wildcard
* to define the probability for all values of the corresponding parent.

 boolean wet_grass dependson rain, sprinkler {
 // wet_grass
 // rain, sprinkler| false, true
 *, *: 0.1, 0.9;
 false, false: 1.00, 0.00;
 true, true: 0.01, 0.99;
 };

Here, the first line defines the distribution for all possible value of
wet_grass parents, the following lines overwrite this default
distribution defining the probabilities
P(wet_grass|rain==false,sprinkler==false) and
P(wet_grass|rain==true,sprinkler==true). In rule-based declarations,
each line must therefore sum to one.

Similarly to any object-oriented progamming language, to use a class, you
need to instantiate it, i.e., to create instances of this class. In O3PRM,
this is realized in a so-called system. The following shows
how to do it.

system MyFirstSystem {
 WaterSprinkler water_sprinkler;
}

Since we have a single class that defines on its own a probability
distribution, we simply need to instantiate it once. But it is possible to
create several instances (see the next section) in order to create a
world with several gardens and sprinklers.

Finally, we need to define a query using the O3PRM language, to do so you
will need to use a different file with the .o3prmr extension. With the
query language, you can import systems, set observations and query marginal
probabilities of instances attributes.

import myFirstPRM;

request MyFirstRequest {
 ? myFirstPRM.MyFirstSystem.water_sprinkler.sprinkler;

 myFirstPRM.MyFirstSystem.water_sprinkler.cloudy = true;

 ? myFirstPRM.MyFirstSystem.water_sprinkler.sprinkler;
}

The import instruction is mandatory in a request file in order to access
the system to query. You simply need to type the name of the file
containing the system you want to import, excluding the .o3prm
extension. You will need to have
your .o3prm and .o3prmr files in the same folder for this to work. You
can check Section 2.2 for a better understanding of how import works and how to
structure your O3PRM project. For this example, we created the following
structure:

 	MyProject
 	/
 	
 	
 	
 	

 	
 	

 3. O3PRM project structure

3. O3PRM project structure

The O3PRM language is made of compilation units that are placed into
modules. It is possible to encode in a single file an entire project but
it is not recommended. A package matches a specific file in which we we can
find at least one compilation unit. The following is a sample O3PRM project:

 	fr
 	\
 	
 	
 	
 	

 	
 	

 4. Type Declaration

4. Type Declaration

The O3PRM language offers three kinds of discrete random variables:
categorical (labelized), integer ranged variables and real-valued discretized
variables. Since domains can be shared among attributes in a PRM, the
random variables’ domains should be declared in a separate compilation unit
called a type.

All types declarations start with the keyword type followed by the type’s
name. The variable’s domain is enclosed inside parentheses.

Here is the full entry for types in the O3PRM BNF:

<type_unit> ::= type <word> <type_body>
<type_body> ::= <basic_type> | <subtype>
<basic_type> ::= <labelized_type> | <integer_type> | <real_type>
<labelized_type> ::= labels "(" <word> ("," <word>)+)"
<integer_type> ::= int "(" <integer> "," <integer> ")"
<real_type> ::= real "(" <float> "," <float> ("," <float>)+ ")"
<subtype> ::= extends <path> "(" <word> ":" <word> ("," <word>)+ ")"

4.1. Categorical Types

Categorical types are used to model categorical random variables, such as
Booleans or colors (red, green and blue for example). The syntax
is straightforward:

type t_state labels (OK, NOK);
type t_colors labels (red, green, blue);

4.1.1. The boolean type

The O3PRM comes with a single built-in type for Boolean random variables. The type is
defined as follows:

type boolean labels (false, true);

4.2. Integer Types

Integer types are used to model ranges between two integer values. The domain
includes all integers between the lower bound and the upper bound specified.

type power int (0,9);

4.3. Real Types

Real types are used to model discretized continuous variables. There must be
at least three values and each interval is defined as]x, y]. For
example, the following declaration:

type angle real (0, 90, 180);

defines the 2-valued discrete random variable defined over]0;90] and
]90;180].

 5. Class Declaration

5. Class Declaration

Classes are the placeholder of attributes and references in the O3PRM
language. You can see them as fragments of Bayesian Networks.

<class> ::= class <word> [extends <word>] "{" <class_elt>* "}"
<class_elt> ::= <reference_slot> | <attribute> | <parameter>

Classes contain three different elements: attributes, reference slots and
parameters.

5.1. Attributes

Attributes are a generic definition of random variables. They are not
random variables: only their instances after instantiating the class are
random variables. Attributes are defined by a type, a name, a set of
parents and a CPT.

<attribute> ::= <attribute_type> <attribute_name> <attribute_cpt> ";"
<attribute_type> ::= <anonymous_type> | <word>
<anonymous_type> ::= <labelized_type> | <integer_type> | <real_type>
<attribute_name> ::= <word> [<dependency>]
<attribute_cpt> ::= (<CPT> | <aggregator>)
<dependency> ::= dependson <parent> ("," <parent>)*

<CPT> ::= "{" (<raw_CPT> | <rule_CPT>) "}"
<raw_CPT> ::= "[" <cpt_cell> ("," <cpt_cell>)+ "]"
<rule_CPT> ::= (<word> ("," <word>)* ":" <cpt_cell> ";")+
<cpt_cell> ::= <float> | """ <formula> """
<formula> ::= <real> | <function> | <formula> <operator> <formula>
<function> ::= <function_name> "(" <formula> ")"
<function_name> ::= exp | log | ln | pow | sqrt

5.1.1. Tabular Declaration

When declaring a CPT in tabular form, the probability values for all the
possible values of the attribute and its parents must be specified. In
addition, the order in which the values are specified is important. The
O3PRM language uses a declaration by column, i.e., in each column of the
CPT, the values must sum to one because the rows of the CPT correspond
the domain of the attribute for which the CPT is specified (please, note
that the terms column and row are used loosely since the table is only
one-dimensional). The following example illustrates the reason why we say
that the columns sum to one:

class Example {
 boolean Y {[0.2, 0.8]};
 boolean Z {[0.5, 0.5]};
 boolean X dependson Y, Z {[
 // Y==false | Y==true
 // Z==false | Z=true | Z==false | Z==true
 0.2, 0.3, 0.7, 0.9, // X == false
 0.8, 0.7, 0.3, 0.1 // X == true
]};
}

In this example, we can see that the first value is the probability
P(X=false|Y=false,Z=false), the second value
P(X=false|Y=false,Z=true), the third P(X=false|Y=true,Z=false) and so
on.

5.1.2. Rule-based CPT declaration

Rule-based declarations exploit the * wildcard symbol to reduce the number of
parameters needed to specify the CPT.

class Example {
 boolean Y {[0.2, 0.8]};
 boolean Z {[0.5, 0.5]};
 boolean X dependson Y, Z {
 // Y, Z: X=false, X=true
 *, false: 1.0, 0.0;
 true, true: 0.01, 0.99;
 false, true: 0.3, 0.7;
};

The first line uses the wildcard * for Y’s outcomes. This defines in
one line the set of probabilities P(X|Y=y,Z=false) for y in
{false,true}. There is no limit in the number of rules and, when two
rules overlap, the last one takes precedence.

5.2. Reference Slots

Reference slots can either be simple (defining a one to one relation, or a
unary relation) or complex (defining a one to N relation, or n-ary relation).

<reference_slot> ::= [internal] <word> ["[" "]"] <word> ";"

5.2.1. Simple Reference Slots

Simple reference slots are used to define a one to one relation between two
classes. They are used in slot chains to add parents from other classes to
an attribute.

class SomeClass {
 boolean Y {[0.2, 0.8]};
 boolean Z {[0.5, 0.5]};
}

class AnotherClass {
 SomeClass myClass;
 boolean X dependson myClass.Y, myClass.Z {
 // Y, Z: X=false, X=true
 *, false: 1.0, 0.0;
 true, true: 0.01, 0.99;
 false, true: 0.3, 0.7;
};

Class AnotherClass defines the reference slot myClass of type
SomeClass and its attribute X uses two slot chains, myClass.Y and
myClass.Z, to reference its parents.

Note that if reference cycles are allowed, you must be careful to not create
cycles between attributes. Indeed, if there exists a cycle between two
attributes, this implies that the CPT of the first one is conditional given
the second attribute and the CPT of the second attribute is conditional
given the first attribute. As a consequence, it is not possible to define a
joint probability distribution using these two CPTs. The problem is exactly
the same for regular Bayesian Networks and it explains why directed cycles
are forbidden in BNs.

5.2.2. Complex Reference Slots

Complex reference slots are used to define n-ary relations between classes.
They can be used in slot chains when declaring aggregators, special
attributes described in section 5.

class SomeClass {
 boolean Y {[0.2, 0.8]};
 boolean Z {[0.5, 0.5]};
}

class AnotherClass {
 SomeClass[] myClass;
 boolean X = or([myClass.Y, myClass.Z]);
}

To declare a complex reference slots we use [] as a suffix to the
reference slot type. In the above example, we declared an or aggregator
referencing attributes Y and Z accessed though the complex reference
myClass. Since myClass is a complex reference slot, we will be able to
reference more than instance of SomeClass. Since we do not know how many
parents there is for attribute X, we need to use an aggregator to
generate the attribute’s CPT when instantiating the class containing the
attribute.

5.3. Parameters

Parameters are used to define constants used in the CPT generation. For
example, if we define two parameters such as lambda and t, we will be
able to write the following formula in a CPT: 1-exp(-lambda*t).

class ClassWithParams {
 param real lambda default 0.003;
 param int t default 8760;
 boolean state {
 ["exp(-lambda*t)", "1-exp(-lambda*t)"]
 };
}

The default keyword is mandatory to provide a default value to
parameters, since they can be changed when declaring an instance of a class
with parameters.

 6. Interface Declaration

6. Interface Declaration

Interfaces are abstract classes used to impose constraints on classes.
Just like classes, interfaces have attributes and reference slots (but no CPT).
Classes that implement interfaces must necessarily contain the attributes
and references slots specified in the interfaces. This mechanism is
particularly effective to easily define relations between classes as well
as multiple inheritance. For instance, interfaces are the key to define
dynamic Bayesian networks (2TBN) using PRMs. Actually, a 2TBN contains one
Bayesian network fragment for time slice t=0 and another fragment for
transitions between time slice t and t+1, for all t’s. Using the 2TBN means
copy/pasting the first fragment once, followed by (T-1) copy/pastes of the
second fragment, hence resulting in the creation of a Bayesian network over
time slices 0 to T. In the O3PRM language, we would naturally consider a
class B0 for the first fragment and a class Bt for the second
one. As Bt models the transition between time slices t0 and t1, some
attributes of Bt should have parents in B0 (otherwise the
transitions never depend on the past, which makes the temporal nature of
the dynamic Bayesian network quite useless). But Bt also models
the transition between time slices t1 and t2. As a result, the parents that
were located in B0 should now be in Bt. So, at first sight, this
prevents specifying dynamic Bayesian networks using the O3PRM
language. Fortunately, interfaces enable this specification. Actually, in
Bt, for the transition between t0 and t1, it is useless to know the
value of the CPT of the parents belonging to B0, what is important is
just to know which attributes of B0 are needed as parents in
Bt. Similarly, for the transition between time slices t1 and t2, the
only information needed in Bt is to know which attributes of t1 are
used as parents in attributes of t2. As a consequence, if these parent
attributes are specified in an interface, and if B0 and Bt
implement this interface, both B0 and Bt are constrained to include
these parent attributes and we just need to specify that, in Bt, the
parents of the attributes at time t+1 are those contained in the
interface. Since the interface is the same for B0 and Bt, when
instantiating these classes, the O3PRM interpreter will select
appropriately the parents. Here is the syntax to specify an interface:

<interface> ::= interface <word> [extends <path>] "{" <interface_elt> "}"
<interface_elt> ::= <reference_slot> | <abstract_attr>
<reference_slot> ::= [internal] <word> ["[" "]"] <word> ";"
<abstract_attr> ::= <word> <word> ";"

Interface attributes are called abstract attributes because they do not have
any CPT.

interface MyInterface {
 boolean state;
}

class MyClass {
 MyInterface iface;
 boolean X dependson iface.state {
 //iface.state==false | iface.state==true
 [0.2, 0.7, // X==false
 0.8, 0.3] // X==true
 };
}

Interfaces can be used as reference slots types and are useful for defining
recursive relations (see the dynamic Bayesian network example described above).
Note the keyword implements in the example below used to indicate that a
class implements an interface, i.e., that it declares all the latter’s
attributes and reference slots. Here, Base and Step correspond to
classes B0 and Bt mentioned in the dynamic Bayesian network example
respectively. Note that attribute state of Step depends on the
attribute state of Interface Iface. As a consequence, when
instantiating, previous.state can be either the state attribute of
Class Base or that of Class Step.

interface Iface {
 boolean state;
}

class Base implements Iface {
 boolean state {[0.2, 0.8]};
}

class Step implements Iface {
 Iface previous;
 boolean state dependson previous.state {
 false: 0.9, 0.1; // P(state|previous.state==false)
 true: 0.2, 0.8; // P(state|previous.state==true)
 };
}

System DynamicO3PRM {
 Base base;
 Step step_1;
 step_1.previous = base;
 Step step_2;
 step_2.previous = step_1;
 Step step_3;
 step_3.previous = step_2;
 // ...
}

 7. Functions

7. Functions

Functions are used as placeholders for specific CPTs of classes attributes.
They replace the CPT declaration by a specific syntax depending on the type
of function used. The first type is the set of functions called aggregators. These
functions are used to quantify the information stored in multiple reference slots.
The second kind contains deterministic functions and the third probabilistic
functions. The last two kinds of functions are not part of the O3PRM
specification and are implementation specific. All functions share the same
syntax:

<aggregator> ::= ("=" | "~") <word> "(" <parents>, <args> ")"
<parents> ::= (<parent> | "[" <parent> (, <parent>)* "]")
<args> ::= <word> ("," <word>)*

The use of = is reserved for deterministic functions and ~ for
probabilistic functions. There are only four built-in functions in the O3PRM
language that are deterministic functions called aggregators. There are five
built-in aggregators in the O3PRM language: min, max, exists,
forall and count. Other deterministic functions such as median
and amplitude are implemented in aGrUM but they can be implemented in
different ways, preventing us from adding them to the O3PRM specification.

7.1. Deterministic Functions

The min and max functions require a single parameter: a list of slot
chains pointing to attributes. The attributes must all be of the same type or
share some common supertype. If the common type is not an int, then the type’s
declaration order is used to compute the min and max values.

class Die {
 type int (1, 6) result {["1/6", "1/6", "1/6", "1/6", "1/6", "1/6"]};
}

class GameOfDice {
 Die[] dice;
 type int (1, 6) snake_eyes = min(dice.result);
 type int (1, 6) bingo = max([dice.result]);
}

If there is only one element in the list of slot chains the [] are
optional.

The exists and forall require two parameters: a list of slot chains
and a value. As for min and max, all attributes referenced in the
slot chains list must share a common type or supertype. The value must be a
valid value of that common supertype. exists and forall attribute
type must always be a boolean.

class BWPrinter {
 boolean black { [0.2, 0.8] };
}

class ColorPrinter {
 boolean magenta { [0.8, 0.2] };
 boolean cyan { [0.8, 0.2] };
 boolean yellow { [0.8, 0.2] };
 boolean black { [0.8, 0.2] };
}

class PrinterMonitor {
 BWPrinter[] bw;
 ColorPrinter[] color;

 boolean has_magenta = exists ([color.magenta], true);
 boolean has_cyan = exists ([color.cyan], true);
 boolean has_yellow = exists ([color.yellow], true);
 boolean color = forall([color.black, color.magenta, color.cyan, color.yellow], true);
 boolean black = exists([bw.black, color.black] };
}

The count aggregator counts how many times a given outcome occurred. Its
type must be of the form type int (0, N), where N is a positive
integer. The outcome N must be interpreted as “the outcome occurred
at least N times”.

class Die {
 type int (1, 6) result {["1/6", "1/6", "1/6", "1/6", "1/6", "1/6"]};
}

class GameOfDice {
 Die[] dice;
 type int (0, 4) four_six = count(dice.result, 6);
}

7.2. Probabilistic Functions

Instead of generating CPTs filled with 0 and 1, like deterministic
functions, probabilistic functions return conditional distributions
following a specific rule. A classic probabilistic function is the
noisy-or, which is implemented in aGrUM as shown below:

class NoisyOr {
 SomeIface iface;
 SomeIface jface;
 boolean state ~ noisy_or([iface.state, jface.state], [0.2, 0.1], 0.4);
}

As for deterministic functions, the first parameter must be a list of
parents. For the noisy-or, the next parameter is a list of weights and the
third the noise. These functions are not part of the O3PRM specification and
you should check your interpreter documentation for their proper syntax.

 8. Inheritance

8. Inheritance

Inheritance is a key aspect of the O3PRM language. O3PRM offers four
different inheritance mechanisms, all with a specific task. Type inheritance
allows to create specialization among random variables’ domains. Coupled with
type casting, it can be used to model complex problems. Class and interface
inheritances offer a more traditional inheritance feature. However its
implementation in the O3PRM language adds a lot of expressiveness to
Probabilistic Relational Models. Finally, interface implementation is how we
implemented multiple inheritance.

8.1. Type Inheritance

Subtypes are used to model a is a relation between types. They are declared
using the extends keyword. You can only subtype categorical types.

type t_state labels (OK, NOK);
type t_degraded extends t_state (OK: OK, DYSFONCTION: NOK, DEGRADED: NOK);

Here we declared the type t_degraded as a subtype of t_state. The
mapping notation used inside parentheses indicates how to interpret each
of t_degraded outcomes as a random variable of type t_state.

8.2. Interface Inheritance

An interface can extend another one, using the keyword extends. By doing so,
the sub interface inherits all of its super interface attributes and
references.

interface SomeIface {}

interface SuperIface {
 SomeIface myRef;
 t_state state;
}

interface SubIface extends SuperIface {
 // No need to declare myRef and state:
 // They are inherited from SuperIface.
}

8.2.1. Reference Overloading

When you declare a sub interface, you can overload inherited reference slots.
To do so, the new reference slot type must be a sub class or sub interface of
the reference slot type in the super interface.

interface SomeIface {}

interface SomeOtherIface extends SomeIface {
 boolean state;
}

interface SuperIface {
 SomeIface myRef;
 t_state state;
}

interface SubIface extends SuperIface {
 // myRef is overloaded with the sub type SomeOtherIface
 SomeOtherIface myRef;
}

8.2.2. Attribute Overloading

As for reference overloading, you can overload inherited attributes with a
subtype of the attribute types in the super interface.

interface SuperIface {
 SomeIface myRef;
 t_state state;
}

interface SubIface extends SuperIface {
 // state is overloaded with t_state subtype t_degraded
 t_degraded state;
}

8.3. Class Inheritance

Class inheritance works the same way as inheritance for interfaces with the
additional possibility to overload an inherited attribute’s CPT.

8.3.1. Attribute CPT Overloading

To overload an inherited attribute’s CPT, you simply need to declare an
attribute with a compatible type.

class SuperClass {
 boolean state { [0.5, 0.5] };
}

class SubClass {
 boolean state { [0.2, 0.8] };
}

8.4. Multiple Inheritance

Classes can implement interfaces using the keyword implements. When a
class implements an interface, it must declare all of the interface’s
attributes and reference slots. If the class
implements several interfaces, then it must declare all the attributes and
reference slots of all its interfaces.

interface MyIface {
 boolean state;
}

interface MyOhterIface {
 MyIface aIface;
 boolean working;
}

class MyClass implements MyIface, MyOtherIface {
 MyIface aIface;
 boolean state {[0.2, 0.8]};
 boolean working dependson state {
 [0.3, 0.6,
 0.7, 0.4]
 };
}

Note that, if a class implements a set of interfaces, then all of its subclasses
also implement the same set of interfaces.

8.5. Casting and cast descendants

Casting and cast descendants are how the O3PRM language handles attribute
type overloading and probabilistic dependencies. Attributes types and CPTs
are tightly coupled: the size of a CPT is the product of the domain sizes of its
attribute’s type and its parents types. The following example will help us
illustrate why we need casting and casting descendants:

type t_state labels(OK, NOK);
type t_degraded extends t_state(OK: OK, degraded: NOK, NOK: NOK);

interface Pump {
 t_state state;
}

class WaterTank {
 Pump myPump;

 boolean overflow dependson myPump.state {
 // OK | NOK => myPump.state
 [0.99, 0.25, // overflow == false
 0.01, 0.75] // overflow == true
 };
}

// Centrifugal Water Pump
class CWPump implements Pump {
 t_degraded state {
 [0.80, // OK
 0.19, // degraded
 0.01] // NOK
 };
}

system MyPumpSystem {
 WaterTank tank;
 CWPump pump;
 tank.myPump = pump;
}

In this example, we model a water tank overflow problem. We have an interface
describing pumps, a class representing a water tank and an implementation
of interface Pump for a centrifugal water pump.

If you look at class WaterTank you will notice that its attribute
overflow depends on Pump attribute state, which is of type
t_state.

However, in system MyPumpSystem, the reference myPump of the
instance tank of Class WaterTank is assigned to an instance of
class CWPump. Since we overloaded the Pump.state type by
t_state subtype t_degraded, the CPT definition of attribute
WaterTank.overflow should be incompatible.

This is not the case here because a cast descendant of attribute CWPump.state
is automatically added to the class CWPump:

t_state state dependons (t_degraded)state {
 // OK, degraded, NOK => (t_degraded)state
 [1.0, 0.0, 0.0, // OK
 0.0, 1.0, 1.0] // NOK
};

This cast descendant is of the expected type and preserves
WaterTank.overflow CPT’s compatibility.

Attributes added automatically are called cast descendants and can be accessed
using the casting notion:

<parent> ::= ["(" <path> ")"] <path>

 9. System Declaration

9. System Declaration

A system is declared as follows:

<system> ::= system <word> "{" <system_elt>* "}"
<system_elt> ::= <instance> | <assignment>

The first word is the system’s name. A system is composed of instance
declarations and assignments. Assignments are used to assign an instance to
an instance’s reference slot. The following illustrates a system declaration:

system name {
 // body
}

9.1. Instance declaration

The syntax to declare an instance in a system is:

<instance> ::= <path> ["[" digit* "]"] <word> ";"

The first word is the instance’s class name and the second is the
instance’s name. For example, if we have a class A we could declare
the following instance:

A an_instance;

We may want to declare arrays of instances. To do so we need to add [n]
as a suffix to the instance’s type, where n is the number of instances
that the array should contain. if n = 0 then we can simply write [].

// An empty array of instances
A_class[] a_name;
// A array of 5 instances
A_class[5] another_name;

You can also specify values for parameters when instantiating a class (see
Section 5.3 on how to parameterize CPTs). The syntax to do so is:

<instance> ::= <path> <word> "(" <parameters> ")" ";"
<parameters> ::= instanceParameter ("," instanceParameter)*
<instanceParameter> ::= <word>"="(<integer>|<float>)

An example:

// We declare an instance of A_class where a_param equals 0.001
A_class a_name(a_param=0.001);

9.2. Assignment

<assignment> ::= <path> += <word> ";" |
 <path> = <word> ";"

It is possible to add instances into an array, using the += operator:

// Declaring some instances
A_class x;
A_class y;
A_class z;
// An empty array of instances
A_class[] array;
// Adding instances to array
array += x;
array += y;
array += z;

Reference assignment is done using the = operator:

class A {
 boolean X {[0.5, 0.5]};
}

class B {
 A myRef;
}

system S {
 // declaring two instances
 A a;
 B b;
 // Assigning b's reference to a
 b.myRef = a;
}

In the case of multiple references, we can either use the = to assign
a whole array or the += operator to add instances one by one:

class A {
 boolean X {[0.5, 0.5]};
}

class B {
 A myRef[];
}

system S1 {
 // declaring an array of five instances of A.
 A[5] a;
 // declaring an instance of B
 B b;
 // Assigning b's reference to a
 b.myRef = a;
}
// An alternative declaration
system S2 {
 // declaring three instances of A
 A a1;
 A a2;
 A a3;
 // declaring an instance of B
 B b;
 // Assigning b's reference to a
 b.myRef += a1;
 b.myRef += a2;
 b.myRef += a3;
}

 10. Query unit declaration

10. Query unit declaration

A query unit is defined using the keyword request. Its syntax is the
following:

<query_unit> ::= request <word> "{" <query_elt>* "}"
<query_elt> ::= <observation> | <query>
<observation> ::= (<path> = <word>) |
 (unobserved <path>)
 ";"
<query> ::= "?" <path> ";"

The first word is the query’s name. In a query unit we can alternate
between observations and queries. An observation, also called an evidence,
allows to specify the value that we observe for a given random variable
(e.g., we observe on our thermometer that variable temperature is equal
to 20 degrees Celsius). Evidence are assigned to their corresponding random
variables using the = operator. A query over random variable X asks
to infer the probability P(X|e) where e represents the set of all the
evidence specified so far in the request unit. This is done using the ?
operator. The unobserve keyword can be used to remove evidence inside
the request unit.

request myQuery {
	// adding evidence
	mySystem.anObject.aVariable = true;
	mySystem.anotherObject.aVariable = 3;
	mySystem.anotherObject.anotherVariable = false;
	// asking to infer some probability value given evidence
	? mySystem.anObject.anotherVariable;
	// remove evidence over an attribute
	unobserve mySystem.anObject.aVariable;
 ? mySystem.anObject.anotherVariable;
}

For instance, in the above example, the first query over random variable
mySystem.anObject.anotherVariable returns the posterior of the
variable given the three evidence entered into the system. The second
query returns the posterior of the same variable given only the last two
evidence entered, the first one being invalidated by the unobserve
instruction.

 11. O3PRM BNF

11. O3PRM BNF

11.1. O3PRM Language Specification

<o3prm> ::= [<header>] <compilation_unit> [(<compilation_unit>)]

<header> ::= <import>
<import> ::= import <path> ";"

<compilation_unit> ::= <type_unit> |
 <class_unit> |
 <system_unit>

<type_unit> ::= type <word> <type_body>
<type_body> ::= <basic_type> | <subtype>
<basic_type> ::= <labelized_type> | <integer_type> | <real_type>
<labelized_type> ::= labels "(" <word> ("," <word>)+)"
<integer_type> ::= int "(" <integer> "," <integer> ")"
<real_type> ::= real "(" <float> "," <float> ("," <float>)+ ")"
<subtype> ::= extends <path> "(" <word> ":" <word> ("," <word>)+ ")"

<class_unit> ::= <class> | <interface>
<class> ::= class <word> [extends <path>] "{" <class_elt>* "}"
<class_elt> ::= <reference_slot> | <attribute> | <parameter>

<interface> ::= interface <word> [extends <path>] "{" <interface_elt> "}"
<interface_elt> ::= <reference_slot> | <abstract_attr>

<reference_slot> ::= [internal] <word> ["[" "]"] <word> ";"

<attribute> ::= <attribute_type> <attribute_name> <attribute_cpt> ";"
<attribute_type> ::= <anonymous_type> | <word>
<anonymous_type> ::= <labelized_type> | <integer_type> | <real_type>
<attribute_name> ::= <word> [<dependency>]
<attribute_cpt> ::= (<CPT> | <aggregator>)
<dependency> ::= dependson <path> ("," <path>)*
<abstract_attr> ::= <word> <word> ";"

<CPT> ::= "{" (<raw_CPT> | <rule_CPT>) "}"
<raw_CPT> ::= "[" <cpt_cell> ("," <cpt_cell>)+ "]"
<rule_CPT> ::= (<word> ("," <word>)* ":" <cpt_cell> ";")+
<cpt_cell> ::= <float> | """ <formula> """
<formula> ::= <real> | <function> | <formula> <operator> <formula>
<function> ::= <function_name> "(" <formula> ")"
<function_name> ::= exp | log | ln | pow | sqrt

<parameter> ::= param (<int_parameter> | <real_parameter>)
<int_parameter> ::= "int" <word> default <integer> ";"
<real_parameter> ::= "real" <word> default <float> ";"

<aggregator> ::= ("=" | "~") <word> "(" <parents>, <args> ")"
<parents> ::= (<parent> | "[" <parent> (, <parent>)* "]")
<args> ::= <word> ("," <word>)*

<parent> ::= ["(" <path> ")"] <path>

<system> ::= system <word> "{" <system_elt>* "}"
<system_elt> ::= <instance> | <assignment>

<instance> ::= <path> ["[" digit* "]"] <word> ";"
<instance> ::= <path> <word> "(" <parameters> ")" ";"
<parameters> ::= instanceParameter ("," instanceParameter)*
<instanceParameter> ::= <word>"="(<integer>|<float>)

<assignment> ::= <path> += <word> ";" |
 <path> = <word> ";"

<word> ::= <letter> (<letter> | <digit>)
<letter> ::= 'A'..'Z' + 'a'..'z'+ '_'
<integer> ::= <digit> <digit>*
<float> ::= <integer> "." <integer>
<digit> ::= '0'..'9'
<path> ::= ["(" ")"] <word> [("." <word>)]

11.2. O3PRM Query Language Specification

<O3PRM> ::= [<header>] <compilation_unit> [(<compilation_unit>)]

<header> ::= <import>
<import> ::= import <path> ";"

<compilation_unit> ::= <query_unit>

<query_unit> ::= request <word> "{" <query_elt>* "}"
<query_elt> ::= <observation> | <query>
<observation> ::= (<path> = <word>) |
 (unobserved <path>)
 ";"
<query> ::= "?" <path> ";"

<word> ::= <letter> (<letter> | <digit>)
<letter> ::= 'A'..'Z' + 'a'..'z'+ '_'
<integer> ::= <digit> <digit>*
<float> ::= <integer> "." <integer>
<digit> ::= '0'..'9'
<path> ::= <word> [("." <word>)]

 12. Examples

12. Examples

12.1. The Water Sprinkler

class WaterSprinkler {
 boolean cloudy {
 [0.5, // false
 0.5] // true
 };

 boolean sprinkler dependson cloudy {
 // false, true => cloudy
 [0.5, 0.9, // sprinkler == false
 0.5, 0.1] // sprinkler == true
 };

 boolean rain dependson cloudy {
 // false, true => cloudy
 [0.8, 0.2, // rain == false
 0.2, 0.8] // rain == true
 };

 boolean wet_grass dependson rain, sprinkler {
 // wet_grass
 // rain, sprinkler| false, true
 *, *: 0.1, 0.9;
 false, false: 1.00, 0.00;
 true, true: 0.01, 0.99;
 };
}

system MyFirstSystem {
 WaterSprinkler water_sprinkler;
}

12.2. The Printer Example

type t_state labels (OK, NOK);

class PowerSupply {
 t_state powState {
 [0.99, // OK
 0.01] // NOK
 };
}

class Room {
 PowerSupply power;
}

class Printer {
 Room room;

 boolean hasPaper {
 [0.1, // false
 0.9] // true
 };

 boolean hasInk {
 [0.3, // false
 0.7] // true
 };

 t_state equipState dependson
 room.power.powState, hasPaper, hasInk { // OK, NOK
 *, *, *: 0.00, 1.00;
 OK, true, true: 0.80, 0.20;
 };
}

class Computer {
 Room room;

 Printer[] printers;

 boolean exists_printer = exists ([printers.equipState], OK);

 boolean can_print = and([printers.equipState, exists_printer]);
}

12.3. Printers with inheritance

type t_state extends boolean (
 OK: true,
 NOK: false
);

type t_ink extends t_state (
 NotEmpty: OK,
 Empty: NOK
);

type t_paper extends t_state (
 Ready: OK,
 Jammed: NOK,
 Empty: NOK);

class PowerSupply {
 t_state state {
 ["0.99", // OK
 "0.01"] // NOK
 };
}

class Room {
 PowerSupply power;
}

interface Printer {
 Room room;
 t_state equipState;
 boolean hasPaper;
 boolean hasInk;
}

class BWPrinter implements Printer {
 Room room;

 t_ink hasInk {
 [0.8, // NotEmpty
 0.2] // Empty
 };
 t_paper hasPaper {
 [0.7, // Ready
 0.2, // Jammed
 0.1] // Empty
 };
 t_state equipState dependson room.power.state, hasInk, hasPaper {
 // OK, NOK
 *, *, *: 0.0, 1.0;
 OK, NotEmpty, Ready: 1.0, 0.0;
 };
}

class ColorPrinter implements Printer {
 Room room;
 t_ink black {
 [0.8, // NotEmpty
 0.2] // Empty
 };
 t_ink magenta {
 [0.8, // NotEmpty
 0.2] // Empty
 };
 t_ink yellow {
 [0.8, // NotEmpty
 0.2] // Empty
 };
 t_ink cyan {
 [0.8, // NotEmpty
 0.2] // Empty
 };
 boolean hasInk = forall ([black, magenta, yellow, cyan], NotEmpty);
 t_paper hasPaper {
 [0.7, // Ready
 0.2, // Jammed
 0.1] // Empty
 };
 t_state equipState dependson room.power.state, hasPaper, hasInk, black {
 // OK, NOK
 *, *, *, *: 0.00, 1.00;
 *, *, false, NotEmpty: 0.00, 0.00;
 OK, Ready, true, *: 0.99, 0.01;
 };
}

class Computer {
 Room room;
 Printer[] printers;
 boolean functional_printer = exists (printers.equipState, OK);
 boolean degraded_printer = exists (printers.equipState, Degraded);
 boolean working_printer = exists ([functional_printer, degraded_printer], true);
 t_state equipState dependson room.power.state {
 // OK, NOK
 OK: 0.90, 0.10;
 NOK: 0.00, 1.00;
 };
 boolean can_print = and([working_printer, (boolean)equipState]);
}

 13. Bibliography

13. Bibliography

J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer
ence. Morgan Kaufman, 1988.

Daphne Koller and Avi Pfeffer. Object-oriented bayesian networks. In Proceedings of
the 13th Annual Conference on Uncertainty in AI, pages 302–313, 1997.

Daphne Koller and Avi Pfeffer. Probabilistic frame-based systems. In Proceedings of the
Fifteenth National Conference on Artificial Intelligence (AAAI-98), pages 580–587,
1998.

Avi Pfeffer. Probabilistic Reasoning for Complex Systems. PhD thesis, Stanford Uni
versity, 1999.

Olav Bangsø and Pierre-Henri Wuillemin. Object oriented bayesian networks: A frame
work for topdown specification of large bayesian networks and repetitive structures.
Technical report, Department of Computer Science, Aalborg University, 2000.

Olav Bangsø and Pierre-Henri Wuillemin. Top-down construction and repetitive struc
tures representation in bayesian networks. In Proceedings of the 13th Florida Artifi
cial Intelligence Research Society Conference, 2000.

Olav Bangsø. Object Oriented Bayesian Networks. PhD thesis, Aalborg University,
March 2004.

Lise Getoor, Nir Friedman, Daphne Koller, Avi Pfeffer, and Ben Taskar. Probabilistic
relational models. In L. Getoor and B. Taskar, editors, An Introduction to Statistical
Relational Learning. MIT Press, 2007.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Techniques.
MIT Press, 2009.

Judea Pearl. Causality. Cambridge University Press, 2009.

Lionel Torti, Pierre-Henri Wuillemin, and Christophe Gonzales. Reinforcing the object
oriented aspect of probabilistic relational models. In Teemu Roos Petri Myllymäki
and Tommi Jaakkola, editors, Proceedings of the The Fifth European Workshop on
Probabilistic Graphical Models. HIIT Publications, 2010.

Lionel Torti. Structured probabilistic inference in object-oriented
probabilistic graphical models. PhD Thesis, Université Pierre et Marie Curie, 2012.

 Index

Index

_static/up-pressed.png

_static/up.png

_static/images/logo.png
&

_images/water_sprinkler.png
cLoupy,
F T

o 5

o

s
Cloudy

SPRINKLER

@et Grass? >

WET GRASS
RAIN__SPRINKLER E T
F F 1 o
F T 01 0.9
T F 01 0.9
T T 0.01 0.99

_static/ajax-loader.gif

_static/comment-bright.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 O3PRM’s documentation

 		
 Introduction

 		
 Bayesian Networks

 		
 Probabilistic Relational Models

 		
 Implementation

 		
 Tutorial

 		
 The Water Sprinkler Example

 		
 The Printer Example

 		
 Printers with inheritance

 		
 O3PRM project structure

 		
 Compilation units

 		
 Header syntax

 		
 Type Declaration

 		
 Categorical Types

 		
 The boolean type

 		
 Integer Types

 		
 Real Types

 		
 Class Declaration

 		
 Attributes

 		
 Tabular Declaration

 		
 Rule-based CPT declaration

 		
 Reference Slots

 		
 Simple Reference Slots

 		
 Complex Reference Slots

 		
 Parameters

 		
 Interface Declaration

 		
 Functions

 		
 Deterministic Functions

 		
 Probabilistic Functions

 		
 Inheritance

 		
 Type Inheritance

 		
 Interface Inheritance

 		
 Reference Overloading

 		
 Attribute Overloading

 		
 Class Inheritance

 		
 Attribute CPT Overloading

 		
 Multiple Inheritance

 		
 Casting and cast descendants

 		
 System Declaration

 		
 Instance declaration

 		
 Assignment

 		
 Query unit declaration

 		
 O3PRM BNF

 		
 O3PRM Language Specification

 		
 O3PRM Query Language Specification

 		
 Examples
